Structural
Schematic of typical animal cell depicting the variousorganelles and structures.
Main articles: Molecular biology, Cell biology, Genetics, and Developmental biology
Molecular biology is the study of biology at a molecular level.[41] This field overlaps with other areas of biology, particularly with genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA, and protein synthesis and learning how these interactions are regulated.
Cell biology studies the physiological properties of cells, as well as their behaviors, interactions, and environment. This is done both on a microscopic and molecular level. Cell biology researches both single-celled organisms like bacteria and specialized cells in multicellular organisms like humans.
Understanding cell composition and how they function is fundamental to all of the biological sciences. Appreciating the similarities and differences between cell types is particularly important in the fields of cell and molecular biology. These fundamental similarities and differences provide a unifying theme, allowing the principles learned from studying one cell type to be extrapolated and generalized to other cell types.
Genetics is the science of genes, heredity, and the variation of organisms.[42][43] Genes encode the information necessary for synthesizing proteins, which in turn play a large role in influencing (though, in many instances, not completely determining) the final phenotype of the organism. In modern research, genetics provides important tools in the investigation of the function of a particular gene, or the analysis ofgenetic interactions. Within organisms, genetic information generally is carried in chromosomes, where it is represented in the chemical structure of particular DNA molecules.
Developmental biology studies the process by which organisms grow and develop. Originating in embryology, modern developmental biology studies the genetic control of cell growth, differentiation, and "morphogenesis," which is the process that progressively gives rise to tissues,organs, and anatomy. Model organisms for developmental biology include the round worm Caenorhabditis elegans,[44] the fruit fly Drosophila melanogaster,[45] the zebrafish Danio rerio[46], the mouse Mus musculus,[47], and the weed Arabidopsis thaliana.[48][49] A model organism is aspecies that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the organism model will provide insight into the workings of other organisms.[50]
Schematic of typical animal cell depicting the variousorganelles and structures.
Main articles: Molecular biology, Cell biology, Genetics, and Developmental biology
Molecular biology is the study of biology at a molecular level.[41] This field overlaps with other areas of biology, particularly with genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA, and protein synthesis and learning how these interactions are regulated.
Cell biology studies the physiological properties of cells, as well as their behaviors, interactions, and environment. This is done both on a microscopic and molecular level. Cell biology researches both single-celled organisms like bacteria and specialized cells in multicellular organisms like humans.
Understanding cell composition and how they function is fundamental to all of the biological sciences. Appreciating the similarities and differences between cell types is particularly important in the fields of cell and molecular biology. These fundamental similarities and differences provide a unifying theme, allowing the principles learned from studying one cell type to be extrapolated and generalized to other cell types.
Genetics is the science of genes, heredity, and the variation of organisms.[42][43] Genes encode the information necessary for synthesizing proteins, which in turn play a large role in influencing (though, in many instances, not completely determining) the final phenotype of the organism. In modern research, genetics provides important tools in the investigation of the function of a particular gene, or the analysis ofgenetic interactions. Within organisms, genetic information generally is carried in chromosomes, where it is represented in the chemical structure of particular DNA molecules.
Developmental biology studies the process by which organisms grow and develop. Originating in embryology, modern developmental biology studies the genetic control of cell growth, differentiation, and "morphogenesis," which is the process that progressively gives rise to tissues,organs, and anatomy. Model organisms for developmental biology include the round worm Caenorhabditis elegans,[44] the fruit fly Drosophila melanogaster,[45] the zebrafish Danio rerio[46], the mouse Mus musculus,[47], and the weed Arabidopsis thaliana.[48][49] A model organism is aspecies that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the organism model will provide insight into the workings of other organisms.[50]
No comments:
Post a Comment